Spectral properties of reducible conical metrics
نویسندگان
چکیده
منابع مشابه
Spectral Properties of Reducible Nonnegative and Eventually Nonnegative Matrices
Let η = (η1, η2, . . . , ηt) and ν = (ν1, ν2, . . . , νt) be two sequences of nonnegative integers. (Append zeros if necessary to the end of the shorter sequence so that they are the same length.) We say that ν is majorized by η if ∑j l=1 νl ≤ ∑j l=1 ηl for all 1 ≤ j ≤ t and tl=1 νl = ∑t l=1 ηl. We write ν 1 η. Let Γ = (V,E) be a graph where V is a finite vertex set and E ⊆ V ×V is an edge set....
متن کاملConical Kähler–Einstein Metrics Revisited
In this paper we introduce the “interpolation–degeneration” strategy to study Kähler–Einstein metrics on a smooth Fano manifold with cone singularities along a smooth divisor that is proportional to the anti-canonical divisor. By “interpolation” we show the angles in (0, 2π ] that admit a conical Kähler–Einstein metric form a connected interval, and by “degeneration” we determine the boundary o...
متن کاملMultilayer networks: metrics and spectral properties
Multilayer networks represent systems in which there are several topological levels each one representing one kind of interaction or interdependency between the systems’ elements. These networks have attracted a lot of attention recently because their study allows considering different dynamical modes concurrently. Here, we revise the main concepts and tools developed up to date. Specifically, ...
متن کاملReducible properties of graphs
Let IL be the set of all hereditary and additive properties of graphs. For P1,P2 ∈ IL, the reducible property R = P1 ◦ P2 is defined as follows: G ∈ R if and only if there is a partition V (G) = V1 ∪ V2 of the vertex set of G such that 〈V1〉G ∈ P1 and 〈V2〉G ∈ P2. The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the dec...
متن کاملMinimal forbidden subgraphs of reducible graph properties
A property of graphs is any class of graphs closed under isomorphism. Let P1,P2, . . . ,Pn be properties of graphs. A graph G is (P1,P2, . . . ,Pn)-partitionable if the vertex set V (G) can be partitioned into n sets, {V1, V2, . . . , Vn}, such that for each i = 1, 2, . . . , n, the graph G[Vi] ∈ Pi. We write P1◦P2◦ · · · ◦Pn for the property of all graphs which have a (P1,P2, . . . ,Pn)-partit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2021
ISSN: 0019-2082
DOI: 10.1215/00192082-9043431